12x^2-583x+35727=40000

Simple and best practice solution for 12x^2-583x+35727=40000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12x^2-583x+35727=40000 equation:


Simplifying
12x2 + -583x + 35727 = 40000

Reorder the terms:
35727 + -583x + 12x2 = 40000

Solving
35727 + -583x + 12x2 = 40000

Solving for variable 'x'.

Reorder the terms:
35727 + -40000 + -583x + 12x2 = 40000 + -40000

Combine like terms: 35727 + -40000 = -4273
-4273 + -583x + 12x2 = 40000 + -40000

Combine like terms: 40000 + -40000 = 0
-4273 + -583x + 12x2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
-356.0833333 + -48.58333333x + x2 = 0

Move the constant term to the right:

Add '356.0833333' to each side of the equation.
-356.0833333 + -48.58333333x + 356.0833333 + x2 = 0 + 356.0833333

Reorder the terms:
-356.0833333 + 356.0833333 + -48.58333333x + x2 = 0 + 356.0833333

Combine like terms: -356.0833333 + 356.0833333 = 0.0000000
0.0000000 + -48.58333333x + x2 = 0 + 356.0833333
-48.58333333x + x2 = 0 + 356.0833333

Combine like terms: 0 + 356.0833333 = 356.0833333
-48.58333333x + x2 = 356.0833333

The x term is -48.58333333x.  Take half its coefficient (-24.29166667).
Square it (590.0850696) and add it to both sides.

Add '590.0850696' to each side of the equation.
-48.58333333x + 590.0850696 + x2 = 356.0833333 + 590.0850696

Reorder the terms:
590.0850696 + -48.58333333x + x2 = 356.0833333 + 590.0850696

Combine like terms: 356.0833333 + 590.0850696 = 946.1684029
590.0850696 + -48.58333333x + x2 = 946.1684029

Factor a perfect square on the left side:
(x + -24.29166667)(x + -24.29166667) = 946.1684029

Calculate the square root of the right side: 30.759850502

Break this problem into two subproblems by setting 
(x + -24.29166667) equal to 30.759850502 and -30.759850502.

Subproblem 1

x + -24.29166667 = 30.759850502 Simplifying x + -24.29166667 = 30.759850502 Reorder the terms: -24.29166667 + x = 30.759850502 Solving -24.29166667 + x = 30.759850502 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '24.29166667' to each side of the equation. -24.29166667 + 24.29166667 + x = 30.759850502 + 24.29166667 Combine like terms: -24.29166667 + 24.29166667 = 0.00000000 0.00000000 + x = 30.759850502 + 24.29166667 x = 30.759850502 + 24.29166667 Combine like terms: 30.759850502 + 24.29166667 = 55.051517172 x = 55.051517172 Simplifying x = 55.051517172

Subproblem 2

x + -24.29166667 = -30.759850502 Simplifying x + -24.29166667 = -30.759850502 Reorder the terms: -24.29166667 + x = -30.759850502 Solving -24.29166667 + x = -30.759850502 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '24.29166667' to each side of the equation. -24.29166667 + 24.29166667 + x = -30.759850502 + 24.29166667 Combine like terms: -24.29166667 + 24.29166667 = 0.00000000 0.00000000 + x = -30.759850502 + 24.29166667 x = -30.759850502 + 24.29166667 Combine like terms: -30.759850502 + 24.29166667 = -6.468183832 x = -6.468183832 Simplifying x = -6.468183832

Solution

The solution to the problem is based on the solutions from the subproblems. x = {55.051517172, -6.468183832}

See similar equations:

| y-0.02y=2058 | | -1.3=x-(-6.12) | | 2x^3+3x^2-8=0 | | 4y-19=-7(y+9) | | (6+2i)(1-3i)(1+3i)= | | 5x^2+8x-17=19-16x | | y=2(-x^2+4x-6) | | 3x^2-12x+7500=0 | | 14+4=11x+22 | | 7-6(8x+3)=2 | | 13x=168 | | 7-2(-6)=5 | | -3v-5=13 | | 2.3+x-3.1=27 | | 1/2(16)(14) | | 2.3+x-3.1= | | 2x+5x+2=10x-2x+1 | | -5(2x-.3)+.5(4x+3)=-64 | | 4(x+2)=16x-2x-12 | | y=1/2()-10-6 | | dy/dx=3e^(x-y) | | X+34=45 | | 7x-20=3x+11 | | -2-3y+8=0 | | 12m=-30+90 | | 9x-4+4x+16+68-2x=180 | | 9x+4+4x+16+68-2x=180 | | 1-3y+8=0 | | -3t+2v=-0.5 | | -1.8q+12+16q=9+10.2q | | 5.7=9+x-1 | | -16=8(y+7) |

Equations solver categories